Actuator for switching between setpoint values with Type RN Tested to VDI 6022 # Constant volume flow control CAV controllers ### RN ### For the precise control of constant volume flow rates Circular self-powered volume flow controllers for the control of supply air or extract air in constant air volume systems - Volume flow rate can be set using an external scale, no tools required - High control accuracy - No on-site test measurements required for commissioning - Suitable for airflow velocities of up to 12 m/s - Any installation orientation; maintenance-free - Casing air leakage to EN 1751, class C ### Optional equipment and accessories - Acoustic cladding for the reduction of case-radiated noise - Secondary silencer Type CA, CS or CF for the reduction of air-regenerated noise - Hot water heat exchanger Type WL and electric air heater Type EL for reheating the airflow - Actuator for switching between setpoint values ### Product data sheet | D | N | |----|----| | ıv | ı١ | | General information | 2 | Variants | 11 | |---------------------|----|-----------------------|----| | -
unction | 4 | Attachments | 14 | | Technical data | 5 | Dimensions and weight | 15 | | Quick sizing | 6 | Installation details | 19 | | Specification text | 9 | Nomenclature | 21 | | Order code | 10 | | | ### **General information** ### **Application** - Circular CONSTANTFLOW CAV controllers of Type RN for the precise supply air or extract air flow control in constant air volume systems - Mechanical self-powered volume flow control without external power supply - Simplified project handling with orders based on nominal size - Volume flow rate setpoint can be set on external scale - Switching between q_{vmin} and q_{vmax} using optional actuator ### **Special features** - Volume flow rate can be set using an external scale; no tools required - High volume flow rate control accuracy - Any installation orientation ### **Nominal sizes** - RN-S: 80, 100, 125 - RN: 80, 100, 125, 160, 200, 250, 315, 400 - RN-FL: 100, 125, 160, 200, 250, 315, 400 ### **Variants** - RN-S: Compact-height volume flow controller - RN: Volume flow controller - RN-D: Volume flow controller with acoustic cladding - RN-FL: Volume flow controller with flanges on both ends - RN-D-FL: Volume flow controller with acoustic cladding and flanges on both ends - Units with acoustic cladding and/or a secondary silencer Type CA, CS or CF for demanding acoustic requirements - Acoustic cladding cannot be retrofitted ### Construction - Galvanised sheet steel - P1: Powder-coated, silver grey (RAL 7001) - A2: Stainless steel ### Parts and characteristics - Ready-to-commission controller - Damper blade with low-friction bearings - Bellows that acts as an oscillation damper - Cam plate with leaf spring - Scale with pointer to set the volume flow rate setpoint - Aerodynamic function testing of each unit on a special test rig prior to shipping - Correct operation even under unfavourable upstream conditions (1.5 D straight section required upstream) ### **Attachments** - Min/Max actuators: Actuators for switching between minimum and maximum volume flow rate setpoint values - Modulating actuators: Actuators for the stepless adjustment of volume flow rates or to switch between minimum and maximum volume flow rate setpoint values - Retrofit kits: Actuators and installation accessories - Variant RN-S cannot be combined with an actuator ### **Accessories** - Lip seals on both ends (factory fitted) - Matching flanges for both ends ### **Useful additions** - Secondary silencer Type CA, CS or CF - Heat exchanger Type WL - Electric air heater Type EL ### **Construction features** Circular casing 2/21 - Spigot suitable for circular ducts to EN 1506 or EN 13180 - Spigot with groove for lip seal (RN-P1/80 and RN-A2/80 are not available with grove and lip seal) - RN-FL: Circular flanges to EN 12220 PD-12/2022 - /en ### **Materials and surfaces** ### Galvanised sheet steel - Casing made of galvanised sheet steel - Interior parts, nominal sizes 80 125: stainless steel 1.4301, nominal sizes 160 – 400: galvanised sheet steel - Polyurethane bellows - Plain bearings with PTFE coating - · Leaf spring made of stainless steel ### Powder-coated construction (P1) - Casing made of galvanised sheet steel, powder-coated - Interior parts, nominal sizes 80 125: stainless steel 1.4301, nominal sizes 160 – 400: galvanised sheet steel, powdercoated ### Stainless steel construction (A2) - Casing made of stainless steel 1.4301 - Interior parts made of stainless steel ### Variant with acoustic cladding (-D) - Acoustic cladding made of galvanised sheet steel - Rubber seal for the insulation of structure-borne noise - Lining is mineral wool ### Mineral wool - To EN 13501, fire rating class A1, non-combustible - RAL quality mark RAL-GZ 388 - Biosoluble and hence hygienically safe according to the German TRGS 905 (Technical Rules for Hazardous Substances) and EU directive 97/69/EC ### Standards and guidelines - Meets the hygiene requirements of VDI 6022 - Casing air leakage to EN 1751, class C #### **Maintenance** Maintenance-free as construction and materials are not subject to wear PD-12/2022 - /en 3/21 ### **Function** ### **Functional description** The volume flow controller is a mechanical self-powered unit and works without external power supply. A damper blade with low-friction bearings is adjusted by aerodynamic forces such that the set volume flow rate is maintained within the differential pressure range. The aerodynamic forces of the airflow create a closing torque on the damper blade. The bellows extends and increases this force while at the same time acting as an oscillation damper. The closing force is countered by a leaf spring that unrolls over a cam plate. The shape of the cam plate is such that a change in the differential pressure leads to an adjustment of the damper blade in a way that the volume flow rate is maintained almost exactly. ### **Efficient commissioning** The volume flow rate setpoint value can be set quickly and easily using the pointer on the external scale; no measurements are required. The advantage over flow adjustment dampers is that there is no need for repeat measurements or adjustments by an air conditioning engineer. Should the system pressure change, e.g. by opening or closing of duct sections, the flow rates in the entire system will also change if flow adjustment dampers are used; however, this is not the case with mechanical self-powered volume flow controllers A mechanical self-powered controller reacts immediately and adjusts the damper blade such that the set constant volume flow rate is maintained. ### Schematic illustration of the RN - ① Damper blade - ② Bellows - 3 Bellows inlet - 4 Crossbar - ⑤ Leaf spring - 6 Cam plate - O Volume flow rate scale lock - ® Volume flow rate scale - Lip seal ### Technical data | Nominal sizes | 80 – 400 mm | |--------------------------------|---| | Volume flow rate range | 11 – 1400 l/s or 40 – 5040 m³/h | | Volume flow rate control range | Approx. 25 – 100% of the nominal volume flow rate | | Scale accuracy | ± 4 % | | Minimum differential pressure | 50 Pa (nominal size 80: 100 Pa) | | Maximum differential pressure | 1000 Pa | | Operating temperature | 10 to 50 °C | ### **Quick sizing** Quick sizing tables provide a good overview of the room sound pressure levels that can be expected. Approximate intermediate values can be interpolated. Precise intermediate values and spectral data can be calculated with our Easy Product Finder design program. The first selection criteria for the nominal size are the actual volume flow rates $q_{V_{min}}$ and $q_{V_{max}}$. The quick sizing tables are based on generally accepted attenuation levels. If the sound pressure level exceeds the required level, a larger air terminal unit and/or a silencer is required. ### Volume flow rate ranges The minimum differential pressure of CAV controllers is an important factor in designing the ductwork and in rating the fan including speed control. Sufficient duct pressure must be ensured for all operating conditions and for all control units. The measurement points for fan speed control must be selected accordingly. ### RN, volume flow rate ranges and minimum differential pressures | NS | qv [l/s] | qv [m³/h] | 1 | 2 | 3 | 4 | | |-----|----------|-----------|-----|---------------------|-----|-----|----------| | | 44 [1,0] | | ı | Δp _{st mi} | | | ΔV [± %] | | 80 | 11 | 40 | 100 | 105 | 105 | 105 | 20 | | 80 | 20 | 72 | 100 | 105 | 105 | 105 | 15 | | 80 | 40 | 144 | 100 | 110 | 115 | 120 | 10 | | 80 | 45 | 162 | 100 | 110 | 120 | 125 | 8 | | 100 | 22 | 79 | 50 | 55 | 55 | 55 | 10 | | 100 | 40 | 144 | 50 | 55 | 55 | 60 | 8 | | 100 | 70 | 252 | 50 | 60 | 65 | 70 | 6 | | 100 | 90 | 324 | 50 | 60 | 70 | 80 | 5 | | 125 | 35 | 126 | 50 | 55 | 55 | 55 | 10 | | 125 | 60 | 216 | 50 | 55 | 55 | 55 | 8 | | 125 | 115 | 414 | 50 | 60 | 65 | 70 | 6 | | 125 | 140 | 504 | 50 | 60 | 70 | 80 | 5 | | 160 | 60 | 216 | 50 | 55 | 55 | 55 | 10 | | 160 | 105 | 378 | 50 | 55 | 55 | 55 | 8 | | 160 | 190 | 684 | 50 | 55 | 60 | 60 | 6 | | 160 | 240 | 864 | 50 | 55 | 65 | 70 | 5 | | 200 | 90 | 324 | 50 | 55 | 55 | 55 | 10 | | 200 | 160 | 576 | 50 | 55 | 55 | 55 | 8 | | 200 | 300 | 1080 | 50 | 55 | 60 | 65 | 6 | | 200 | 360 | 1296 | 50 | 55 | 60 | 65 | 5 | | 250 | 145 | 522 | 50 | 55 | 55 | 55 | 10 | | 250 | 255 | 918 | 50 | 55 | 55 | 55 | 8 | | 250 | 470 | 1692 | 50 | 55 | 60 | 60 | 6 | | 250 | 580 | 2088 | 50 | 55 | 60 | 65 | 5 | | 315 | 230 | 828 | 50 | 55 | 55 | 55 | 10 | | 315 | 400 | 1440 | 50 | 55 | 55 | 55 | 8 | | 315 | 750 | 2700 | 50 | 55 | 60 | 60 | 6 | | 315 | 920 | 3312 | 50 | 55 | 60 | 65 | 5 | | 400 | 350 | 1260 | 50 | 55 | 55 | 55 | 10 | | 400 | 610 | 2196 | 50 | 55 | 55 | 55 | 8 | | 400 | 1130 | 4068 | 50 | 55 | 55 | 55 | 6 | | 400 | 1400 | 5040 | 50 | 55 | 55 | 60 | 5 | ① RN without silencer ② RN with circular silencer CF, insulation thickness 50 mm, length 500 mm $[\]ensuremath{\mathfrak{B}}$ RN with circular silencer CF, insulation thickness 50 mm, length 1000 mm ④ RN with circular silencer CF, insulation thickness 50 mm, length 1500 mm ### RN, sound pressure level at differential pressure 150 Pa | | | | | Air-regenerate | d noise [dB(A)] | | Case-radiated noise [dB(A)] | | | |-----|----------|-----------|-----------------|----------------|------------------|----|-----------------------------|------------------|--| | NS | qv [l/s] | qv [m³/h] | ① | 2 | 3 | 4 | 1 | ⑤ | | | | | | L _{PA} | | L _{PA1} | | L _{PA2} | L _{PA3} | | | 80 | 11 | 40 | 37 | 24 | 17 | 15 | 22 | <15 | | | 80 | 20 | 72 | 39 | 27 | 19 | 17 | 24 | <15 | | | 80 | 40 | 144 | 47 | 34 | 24 | 22 | 31 | <15 | | | 80 | 45 | 162 | 48 | 35 | 25 | 24 | 32 | <15 | | | 100 | 22 | 79 | 37 | 24 | 17 | 15 | 22 | <15 | | | 100 | 40 | 144 | 40 | 29 | 22 | 20 | 21 | <15 | | | 100 | 70 | 252 | 47 | 35 | 27 | 26 | 29 | <15 | | | 100 | 90 | 324 | 50 | 38 | 30 | 29 | 33 | <15 | | | 125 | 35 | 126 | 37 | 27 | 21 | 18 | 15 | <15 | | | 125 | 60 | 216 | 43 | 34 | 27 | 25 | 19 | <15 | | | 125 | 115 | 414 | 50 | 41 | 35 | 33 | 27 | <15 | | | 125 | 140 | 504 | 52 | 44 | 39 | 37 | 30 | <15 | | | 160 | 60 | 216 | 40 | 32 | 26 | 24 | 29 | <15 | | | 160 | 105 | 378 | 45 | 37 | 32 | 29 | 33 | <15 | | | 160 | 190 | 684 | 49 | 41 | 35 | 33 | 39 | <15 | | | 160 | 240 | 864 | 50 | 41 | 36 | 34 | 41 | 16 | | | 200 | 90 | 324 | 40 | 31 | 24 | 22 | 28 | <15 | | | 200 | 160 | 576 | 43 | 35 | 28 | 26 | 32 | <15 | | | 200 | 300 | 1080 | 48 | 40 | 33 | 32 | 40 | 17 | | | 200 | 360 | 1296 | 49 | 41 | 35 | 33 | 42 | 20 | | | 250 | 145 | 522 | 41 | 32 | 24 | 22 | 29 | 15 | | | 250 | 255 | 918 | 42 | 34 | 28 | 26 | 33 | <15 | | | 250 | 470 | 1692 | 46 | 39 | 33 | 31 | 40 | 19 | | | 250 | 580 | 2088 | 48 | 41 | 35 | 34 | 43 | 22 | | | 315 | 230 | 828 | 39 | 33 | 26 | 23 | 30 | <15 | | | 315 | 400 | 1440 | 42 | 35 | 29 | 27 | 35 | <15 | | | 315 | 750 | 2700 | 44 | 38 | 32 | 31 | 40 | 19 | | | 315 | 920 | 3312 | 46 | 41 | 35 | 34 | 43 | 23 | | | 400 | 350 | 1260 | 46 | 39 | 33 | 29 | 45 | <15 | | | 400 | 610 | 2196 | 48 | 42 | 36 | 32 | 49 | 18 | | | 400 | 1130 | 4068 | 50 | 44 | 38 | 35 | 54 | 24 | | | 400 | 1400 | 5040 | 51 | 45 | 40 | 37 | 56 | 27 | | - ① RN without silencer - $\ensuremath{\textcircled{2}}$ RN with circular silencer CF, insulation thickness 50 mm, length 500 mm - 3 RN with circular silencer CF, insulation thickness 50 mm, length 1000 mm - ④ RN with circular silencer CF, insulation thickness 50 mm, length 1500 mm - ⑤ RN-D (with acoustic cladding) ### Sizing example ### Given data $q_{vmax} = 280 \text{ l/s } (1010 \text{ m}^3/\text{h})$ Δp_{st} = 150 Pa Specified sound pressure level in the room 35 dB(A) ### **Quick sizing** RN/200 with circular silencer CF 050/200×1000 Air-regenerated noise L_{PA} = 26 dB(A) Case-radiated noise L_{PA} = 31 dB(A) PD-12/2022 - /en ### Specification text This specification text describes the general properties of the product. Texts for variants can be generated with our Easy Product Finder design program. Circular volume flow controllers for constant air volume systems, mechanical self-powered, without external power supply, suitable for supply or extract air, available in 8 nominal sizes. Ready-to-commission unit consists of the casing containing a damper blade with low-friction bearings, bellows, external cam plate and leaf spring. Volume flow controllers without actuators are factory set to a reference volume flow rate (customers can set the required volume flow rate on site). Spigot with groove for lip seal, suitable for connecting ducts according to EN 1506 or EN 13180. Casing air leakage to EN 1751, class C. ### **Special features** - Volume flow rate can be set using an external scale; no tools required - · High volume flow rate control accuracy - Any installation orientation ### **Materials and surfaces** Galvanised sheet steel - Casing made of galvanised sheet steel - Interior parts, nominal sizes 80 125: stainless steel 1.4301, nominal sizes 160 – 400: galvanised sheet steel - Polyurethane bellows - Plain bearings with PTFE coating - · Leaf spring made of stainless steel Powder-coated construction (P1) - Casing made of galvanised sheet steel, powder-coated - Interior parts, nominal sizes 80 125: stainless steel 1.4301, nominal sizes 160 – 400: galvanised sheet steel, powdercoated Stainless steel construction (A2) Casing made of stainless steel 1.4301 - Interior parts made of stainless steel - Variant with acoustic cladding (-D) - Acoustic cladding made of galvanised sheet steel - Rubber seal for the insulation of structure-borne noise - Lining is mineral wool Mineral wool - To EN 13501, fire rating class A1, non-combustible - RAL quality mark RAL-GZ 388 - Biosoluble and hence hygienically safe according to the German TRGS 905 (Technical Rules for Hazardous Substances) and EU directive 97/69/EC #### Construction - Galvanised sheet steel - P1: Powder-coated, silver grey (RAL 7001) - A2: Stainless steel ### **Technical data** - Nominal sizes: 80 to 400 mm - Volume flow rate range: 11 to 1400 l/s or 40 to 5040 m³ /h - Volume flow rate control range: approx. 25 100 % of the nominal volume flow rate - Minimum differential pressure: 50 Pa (nominal size 80: 100 Pa) - Maximum differential pressure: 1000 Pa ### Auslegungsdaten - qv [m³/h] - Δp_{st} [Pa] Air-regenerated noise L_{PA} [dB(A)] Case-radiated noise L_{PA} [dB(A)] 9/21 PD-12/2022 - /en ### Order code ### 1 Type RN-S Compact-height volume flow controller 3 Nominal size [mm] 80, 100, 125 #### 2 Material No entry: galvanised sheet steel P1 Powder-coated RAL 7001 (silver grey) A2 Stainless steel construction ### 4 Accessories No entry: without accessories D2 Double lip seal both ends ### Order example: RN-S-P1/100/D2 RN-S Type Material Powder-coated RAL 7001 (silver grey) Nominal size [mm] Accessories Double lip seal both ends Remark: RN-S-A2/80 not with double lip seal (D2) ### 1 Type RN Volume flow controller 2 Acoustic cladding No entry: none D With acoustic cladding ### 3 Material No entry: galvanised sheet steel P1 Powder-coated RAL 7001 (silver grey) A2 Stainless steel construction ### 4 Flange No entry: none FL Flanges both ends 5 Nominal size [mm] 80, 100, 125, 160, 200, 250, 315, 400 **6 Accessories** No entry: without accessories **D2** Double lip seal both ends (only for FL constructions, i.e. without flanges) G2 Matching flanges for both ends (only with FL) 7 Actuator for setpoint value adjustment No entry: none B50 24 V AC/DC, 3-point (min/max) B52 24 V AC/DC, 3-point (min/max), with auxiliary switch **B60** 230 V AC, 3-point (min/max) B62 230 V AC, 3-point (min/max), with auxiliary switch B70 24 V AC/DC, modulating, 2 - 10 V DC 8 Operating values for factory setting Volume flow rate [m3/h or l/s] Only with actuator q_vmin - q_vmax 300 - 800 [m³/h] ### Order example: RN-D-P1-FL/160/G2/B50/300-800[m³/h] Type RN Acoustic cladding With acoustic cladding **Material** Powder-coated RAL 7001 (silver grey) Flange Flanges both ends Nominal size [mm] 160 Accessories Matching flanges for both ends Actuator for setpoint adjustment 24 V AC/DC, 3-point (min/max) Remark: RN/80 not with flange (FL) or with counter flange (G2) RN-A2/80 not with double lip seal (D2) Operating values for factory setting ### **Variants** ### CAV controller variant RN-S, compact height - Compact-height volume flow controller for constant volume flow rate control - Spigot to make connections to the ducting ### **CAV** controller variant RN CAV controller variant RN, with actuator for switching between setpoint values - Volume flow controller for constant air volume flow control - Spigot to make connections to the ducting ### **CAV** controller variant RN-D - Volume flow controller with acoustic cladding for constant air volume flow control - Spigot to make connections to the ducting - For rooms where the case-radiated noise of the unit is not sufficiently reduced by a false ceiling - The circular ducts for the room under consideration must have adequate acoustic insulation (provided by others) on the fan and room ends - Acoustic cladding cannot be retrofitted - Volume flow controller for constant air volume flow control - With flanges to make detachable connections to the ductwork ### Materialien | Order code detail | Part | Material | Notes | |-------------------|--|---|---------------------------------------| | | Casing | Galvanised sheet steel | | | | | Stainless steel, material no.
1.4301 | Nominal size 80 | | | Damper blade | Stainless steel, material no. 1.4310 | Nominal sizes: 100, 125 | | - | | Galvanised sheet steel | Nominal sizes from 160 | | | Shaft | Stainless steel, material no.
1.4301 | Nominal sizes 80 to 200 | | | Shait | Stainless steel, material no.
1.4104 | Nominal sizes 250 to 400 | | | Plain bearings | Steel with PTFE coating | | | | Acoustic cladding | Galvanised sheet steel | | | D | Rubber profile for the insulation of structure-borne noise | Rubber | | | | Lining | Mineral wool | | | | Casing | Galvanised sheet steel | Powder-coated | | | | Stainless steel, material no. 1.4301 | Nominal size 80 | | | Damper blade | Stainless steel, material no. 1.4310 | Nominal sizes: 100, 125 | | P1 | | Galvanised sheet steel | Powder-coated, nominal sizes from 160 | | | Ol - 6 | Stainless steel, material no.
1.4301 | Nominal sizes 80 to 200 | | | Shaft | Stainless steel, material no.
1.4305 | Nominal sizes 250 to 400 | | | Plain bearings | Bronze with PTFE coating | | | | Casing | Stainless steel, material no.
1.4301 | Nominal size 80 | | | Damper blade | Stainless steel, material no.
1.4310 | Nominal sizes: 100, 125 | | A2 | | Stainless steel, material no. | Nominal sizes from 160 | | | | 1.4301 | Nominal sizes 80 to 200 | | | Shaft | Stainless steel, material no.
1.4305 | Nominal sizes 250 to 400 | | | Plain bearings | Bronze with PTFE coating | | ### Oberflächen | Order code detail | Part | Surface | |-------------------|--------|--------------------------------------| | _ | Casing | Galvanised steel | | P1 | Casing | Powder-coated, RAL 7001, silver grey | | A2 | Casing | Stainless steel construction | 13 / 21 ### **Attachments** ### RN, actuators | Order code detail | Actuator | Supply voltage | Auxiliary switch | |----------------------|--|----------------|------------------| | Min/Max actuators | | | | | TROX/Belimo | | 24 V AC/DC | _ | | | | 24 V AC/DC | 2 | | B60 | Actuator with mechanical stops TROX/Belimo | 230 V AC | _ | | B62 | Actuator with mechanical stops TROX/Belimo | 230 V AC | 2 | | Modulating actuators | | | | | B70 | Actuator with mechanical stops TROX/Belimo | 24 V AC/DC | _ | | B72 | Actuator with mechanical stops TROX/Belimo | 24 V AC/DC | 2 | ## Dimensions and weight ### RN-S, nominal size 80 ### RN-S, nominal size 80, lip seal RN-S/80, RN-S-P1/80, RN-S-A2/80 RN-S/80/D2, RN-S-P1/80/D2 ### RN-S | Nannarälla | ØD | m | |--------------|----|-----| | iveningroise | mm | kg | | 80 | 79 | 1,4 | ### RN-S, nominal size 100, 125 ### RN-S ### RN-S | Nonnarälla | ØD | L | А | m | |------------|-----|-----|----|-----| | Nenngröße | mm | | | kg | | 100 | 99 | 250 | 50 | 1,8 | | 125 | 124 | 250 | 50 | 2,0 | RN RN ### RN | Nannaräßa | ØD | L | A | m | |-----------|-----|-----|----|-----| | Nenngröße | | kg | | | | 80 | 79 | 310 | 50 | 1,4 | | 100 | 99 | 310 | 50 | 1,8 | | 125 | 124 | 310 | 50 | 2,0 | | 160 | 159 | 310 | 50 | 2,5 | | 200 | 199 | 310 | 50 | 3,0 | | 250 | 249 | 400 | 50 | 3,5 | | 315 | 314 | 400 | 50 | 4,8 | | 400 | 399 | 400 | 50 | 5,7 | ### RN-P1/80 ### RN-P1/80/D2 ### RN-A2/80 RN-D RN-D ### RN-D | Nonnarößo | ØD | L | ØD3 | L1 | m | |-----------|-----|-----|-----|-----|------| | Nenngröße | | m | m | | kg | | 80 | 79 | 310 | 181 | 232 | 2,2 | | 100 | 99 | 310 | 200 | 232 | 3,6 | | 125 | 124 | 310 | 220 | 232 | 4,0 | | 160 | 159 | 310 | 262 | 232 | 5,0 | | 200 | 199 | 310 | 300 | 232 | 6,0 | | 250 | 249 | 400 | 356 | 312 | 7,3 | | 315 | 314 | 400 | 418 | 312 | 9,8 | | 400 | 399 | 400 | 500 | 312 | 11,8 | ### RN-D-P1/80/D2 ### RN-D-A2/80 ### RN-FL RN-FL ### **RN-FL** | Naminal aiza | ØD | L | ØD1 | ØD2 | n | T | m | | |--------------|-----|-----|-----|-----|---|---|-----|--| | Nominal size | mm | | | | | | | | | 100 | 99 | 290 | 132 | 152 | 4 | 4 | 2.4 | | | 125 | 124 | 290 | 157 | 177 | 4 | 4 | 2.7 | | | 160 | 159 | 290 | 192 | 213 | 6 | 4 | 3.5 | | | 200 | 199 | 290 | 233 | 253 | 6 | 4 | 4.4 | | | 250 | 249 | 380 | 283 | 303 | 6 | 4 | 5.3 | | | 315 | 314 | 380 | 352 | 378 | 8 | 4 | 7.3 | | | 400 | 399 | 380 | 438 | 464 | 8 | 4 | 9.6 | | ### RN-D-FL RN-D-FL ### RN-D-FL | Name on 50 a | ØD | L | ØD1 | ØD2 | ØD3 | L1 | n | Т | m | |--------------|-----|-----|-----|-----|-----|-----|---|----|------| | Nenngröße | mm | | | | | | | mm | kg | | 100 | 99 | 370 | 132 | 152 | 200 | 232 | 4 | 4 | 4,2 | | 125 | 124 | 370 | 157 | 177 | 220 | 232 | 4 | 4 | 4,7 | | 160 | 159 | 370 | 192 | 212 | 262 | 232 | 4 | 4 | 6,0 | | 200 | 199 | 370 | 233 | 253 | 300 | 232 | 4 | 4 | 7,4 | | 250 | 249 | 460 | 283 | 303 | 356 | 312 | 6 | 4 | 9,1 | | 315 | 314 | 460 | 352 | 378 | 418 | 312 | 8 | 4 | 12,3 | | 400 | 399 | 460 | 438 | 464 | 500 | 312 | 8 | 4 | 15,7 | ### Installation details ### Installation and commissioning - Any installation orientation - Volume flow rate can be set using an external scale; no tools required - No repeat measurements or adjustments by an air conditioning engineer are necessary - RN-D: For constructions with acoustic cladding, ducts on the room side should have cladding up to the acoustic cladding of the controller ### **Upstream conditions** The volume flow rate accuracy ΔV applies to a straight upstream section of the duct. Bends, junctions or a narrowing or widening of the duct cause turbulence that may affect measurement. Duct connections, e.g. branches off the main duct, must comply with EN 1505. Some installation situations require straight duct sections upstream. Free air intake only with a straight duct section of 1D upstream. **Bend** Junction A bend with a curvature radius of at least 1D - without an additional straight duct section upstream of the CAV controller – rate accuracy ΔV can only be achieved with a straight duct has only a negligible effect on the volume flow rate accuracy. A junction causes strong turbulence. The stated volume flow section of at least 1.5D upstream. Shorter upstream sections require a perforated plate in the branch and before the CAV controller. If there is no straight upstream section at all, the control will not be stable, even with a perforated plate. ### Space required for commissioning and maintenance Sufficient space must be kept clear near any attachments to allow for commissioning and maintenance. It may be necessary to provide sufficiently sized inspection access openings. ### Access for commissioning and maintenance Space required | - pass 104 amon | | | | | | | |---------------------|-----|-----|-----|--|--|--| | A the allows a late | ① | 2 | 3 | | | | | Attachments | mm | | | | | | | Without actuator | 200 | 200 | 200 | | | | | With actuator | 200 | 320 | 300 | | | | ### Nomenclature #### ØD [mm] Outer diameter of the spigot ### $\emptyset D_1$ [mm] Pitch circle diameter of flanges ### $\emptyset D_2$ [mm] Outer diameter of flanges ### ØD₄ [mm] Inside diameter of the screw holes of flanges #### L [mm] Length of unit including connecting spigot ### L, [mm] Length of casing or acoustic cladding #### H. [mm] Screw hole pitch of flange (vertical) #### **n** [] Number of flange screw holes #### T [mm] Flange thickness #### **m** [kg] Unit weight including the minimum required attachments for manual adjustment ### \mathbf{f}_{m} [Hz] Octave band centre frequency ### L_{PA} [dB(A)] A-weighted sound pressure level of air-regenerated noise of the CAV controller, system attenuation taken into account ### L_{PA1} [dB(A)] A-weighted sound pressure level of air-regenerated noise of the CAV controller with secondary silencer, system attenuation taken into account ### L_{PA2} [dB(A)] A-weighted sound pressure level of case-regenerated noise of the CAV controller, system attenuation taken into account ### L_{PA3} [dB(A)] A-weighted sound pressure level of case-regenerated noise of the CAV controller with acoustic cladding, system attenuation taken into account ### **q**_{vNom} [m³/h]; [l/s] Nominal volume flow rate (100 %) - The value depends on product type and nominal size - Values are published on the internet and in technical leaflets, and stored in the Easy Product Finder design software. - Upper limit of the setting range and maximum volume flow rate setpoint value for the CAV controller **q**_v [m³/h]; [l/s] Volume flow rate ### **∆q**, [± %] Volume flow rate accuracy in relation to the setpoint (tolerance) ### Δp_{st} [Pa Static differential pressure ### Δ_{pst min} [Pa] Static minimum differential pressure: The static minimum differential pressure is equal to the pressure loss of the terminal unit when the damper blade is open, caused by flow resistance (damper blade). If the pressure on the CAV controller is too low, the setpoint volume flow rate may not be achieved, not even when the damper blade is open. Important factor in designing the ductwork and in rating the fan including speed control. Sufficient differential pressure must be ensured for all operating conditions and for all controllers, and the measurement point or points for speed control must have been selected accordingly to achieve this. ### Verzinktes Stahlblech - Casing made of galvanised sheet steel - Parts in contact with the airflow as described for the product type - External parts, e.g. mounting brackets or covers, are usually made of galvanised sheet steel ### Pulverbeschichtete Oberfläche (P1) - Casing made of galvanised sheet steel, powder-coated RAL 7001, silver grey - Parts in contact with the airflow are powder-coated or made of plastic - Due to production, some parts that come into contact with the airflow may be stainless steel or aluminium, powder-coated - External parts, e.g. mounting brackets or covers, are usually made of galvanised sheet steel ### Edelstahl (A2) 21 / 21 - Casing made of stainless steel 1.4201 - Parts in contact with the airflow are powder-coated or made of stainless steel - External parts, e.g. mounting brackets or covers, are usually made of galvanised sheet steel PD-12/2022 - /en